
Genetic Programming Search for
Λ+

c → pK+π− and D+
s → K+K+π−

PANIC 2005

24 October 2005

Eric W. Vaandering
ewv@fnal.gov

Vanderbilt University

for

FOCUS Collaboration

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.1/36

Overview
• Introduction to Genetic Programming

• Populations and Generations
• Mutation and Crossover
• Fitness and Natural Selection

• Genetic Programming applied to the doubly Cabibbo
suppressed decays Λ+

c → pK+π− and D+
s → K+K+π−

• Exploration of GP specific systematic uncertainties
• Conclusions

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.2/36

What is Genetic Programming
Genetic programming is a machine learning algorithm based on
two assumptions:

To find solutions to a problem, we mimic biology and the
evolutionary process.

Since we will use computer programs to implement our
solutions, the form of our solution should be a computer
program.

Genetic Programming applies a biological model which includes
reproduction, mutation, and survival of the fittest to
automatically discover computer programs.

• Pioneered by John Koza: Genetic Programming: On the
Programming of Computers by Natural Selection (1992)

• Since 1992, more than 3,000 papers applied to a wide range
of problems in many disciplines

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.3/36

Populations and Generations
Genetic Programming works by transforming one group of
programs (simple event filters in our case) in generation n into
another group of programs in generation n + 1. There are
typically a few hundred to a few thousand programs per
generation.

The initial programs in the 0th generation are generated
completely randomly.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.4/36

Gene Cross-over and Mutation
1) Biological

(DNA)
Cross-over

2) Mutations in nature change the genetic code for a small region
of DNA. Usually are harmful or neutral; occasionally helpful
(creates a better/different protein).

Mutations can restore lost (or never present) diversity.

These two processes, combined with natural selection,
drive biological evolution.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.5/36

Tree Representation
Genetic Programming fundamentals are easier to illustrate if we
adopt a “Tree” representation of a program. An example of this
representation:

Code: Program tree

float myfunc(float x, float y) {
float val;
if (x > y) {

val = x*x + y;
} else {

val = y*y + x;
}
return val;

}

IF

>

x y

+

×

x x

y

+

×

y y

x

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.6/36

Crossover (Recombination)
Two programs and crossover points within them are chosen.
Sub-trees are removed and swapped between trees, giving two
new “children”

−

+

x 1

y

+

1 ×

x x

→

−

x y

+

1 ×

+

x 1

x

It may combine the best aspects of both parents into one child (of
course, we are just as likely to end up with the worst aspects in
one child).

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.7/36

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

y y

Pick a parent & mutation point

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.8/36

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

Pick a parent & mutation point
Remove the sub-tree

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.9/36

Mutation
Occasionally we want to introduce a mutation into a program or
tree.

+

×

x x

−

x +

y x

Pick a parent & mutation point
Remove the sub-tree
Randomly build a new sub-tree

Mutation can often be very destructive in Genetic Programming
Remember, both crossover and mutation are random processes.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.10/36

Survival of the Fittest
In nature, we know that the more fit an organism is for it’s
environment, the more likely it is to reproduce. This is one of the
basic tenets of evolutionary theory.

The Genetic Programming method mimics this by determining a
fitness for each individual. Which individuals reproduce is based
on that fitness.

• The better the fitness, the better the solution
• The problem must allow for inexact solutions. There may

be a single correct solution, but there must be a way to
distinguish between increasingly incorrect solutions.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.11/36

Reproduction Probabilities
To select which individuals are chosen to populate the next
generation, they are randomly chosen according to their fitness.
We use something like a roulette wheel where the size of the slot
is proportional to the fitness.

Good Fitness

Bad Fitness

• The best individual is most likely to be chosen, but is not
guaranteed to be chosen

• The worst individual may be chosen
• Best “sub-programs” (like genes) tend to surviveEric Vaandering – Genetic Programming Search for Λ+

c
→ pK+

π
− and D+

s
→ K+K+

π
− – p.12/36

Running the GP
Putting it all together, we are ready to “run” the GP (find a
solution).

• User has defined functions, variables, and measure of
fitness

• Generate a population of programs (few hundred to few
thousand) to be tested

• Test each program against fitness definition
• Choose genetic operation (crossover/mutation) and

individuals to create next generation, randomly according
to fitness

• Repeat process for next generation
• Often tens of generations are needed to find the best

solution
• At the end, we have a large number of solutions; look at the

best
Eric Vaandering – Genetic Programming Search for Λ+

c
→ pK+

π
− and D+

s
→ K+K+

π
− – p.13/36

Application to HEP
OK, so all this is interesting to computer scientists, but how does
it apply to physics, specifically HEP?

In FOCUS, we typically select interesting (signal, we hope)
events from background processes using cuts on interesting
variables. That is, we construct variables we think are
interesting, and then require that an event pass the AND of a set
of selection criteria.

Instead, what if we give a Genetic Programming framework
some variables we think might be interesting, and allow it to
construct a filter for the events?

• If an AND of cuts is the best solution, the GP can find that

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.14/36

Questions
When considering an approach like this, some questions
naturally arise:

• Does it do as well as normal cut methods do?
• How do we know it’s not biased?
• The tree can grow large with useless information.
• Is it evolving or randomly hitting on good combinations?

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.15/36

Evaluating the GP
We chose to work with doubly Cabibbo suppressed decays
normalized to Cabibbo favored decays where only the charge of
the particles is different. Two nearly identical decays → less
stringent systematics.

We use the GP generated trees to classify each event as
“signal-like” or “background–like.” We do this for both CF and
DCS decays and only consider “signal-like” events.

We then calculate a fitness related to the projected significance
from fits to the CF signal and DCS background with the signal
region blinded.

The GP optimizes this fitness as described.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.16/36

Pre-GP selection signals

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4

2
E

ve
n

ts
/5

 M
eV

/c

0

2000

4000

6000

8000

10000

12000

14000

Skim criteria

 357±Yield = 21052

Skim criteria

Lower histogram: Λ+
c → pK+π− candidates

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.17/36

Signals after GP selection

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4

 2
E

ve
n

ts
/5

 M
eV

/c

0

100

200

300

400

500

600

700

800

900

 60±Yield = 3067

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4
0

2

4

6

8

10 6.6±Yield = 1.2

GP retains 3,000 of 21,000 original CF events
DCS background reduced 1000×

Fits during optimization use 1st degree polynomial.
Analysis uses 2nd degree

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.18/36

Best tree (72nd generation)
−

IF

AND

<

Iso2 σM

/

sin

AND

−

IF

<

0.45250 Σp2
T

×

AND

XOR

DL 0.54506

ln

∆Kp

ln

∆Kp

Iso1

IF

Iso1 >

×

Clp IF

−

NDau #τ

−

Clp Iso2

Iso1

neg

<=>

σt p

×

Clp Cls

Iso1

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.19/36

GP Bias Check
Only optimized on half the events. Check the other half:

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4

2
E

ve
n

ts
/5

 M
eV

/c

0

50

100

150

200

250

300

350

400

450

CF Used

 43±Yield = 1522

CF Used

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4

2
E

ve
n

ts
/5

 M
eV

/c

0

50

100

150

200

250

300

350

400

450

CF Unused

 43±Yield = 1547

CF Unused

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4

2
E

ve
n

ts
/5

 M
eV

/c

0

1

2

3

4

5

6

7

DCS Used

 5.1±Yield = 3.3

DCS Used

2GeV/c
2.1 2.15 2.2 2.25 2.3 2.35 2.4

2
E

ve
n

ts
/5

 M
eV

/c

0

1

2

3

4

5

6

7

DCS Unused

 4.2±Yield = -1.9

DCS Unused

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.20/36

Data vs. MC comparisons
We picked DCS decays since the normalizing mode is nearly
identical. It is important that the relative efficiency of the tree for
CF and DCS modes is well modeled by our MC. Unfortunately,
we can’t measure this.

What we can measure is the efficiency of the tree (w.r.t. the base
skim cuts) on data and MC:

Efficiency (GP/Skim)
Data (14.5 ± 0.4)%

Monte Carlo (14.9 ± 0.1)%

We always see such excellent agreement, which means that these
multi-dimensional selections are well modeled by our MC. We
take the nominal discrepancy (0.4%) as a systematic error.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.21/36

Comparison with Cut Method
Compare this analysis with an old attempt with normal method:

Branching Ratio with GP:
0.05 ± 0.26%

Branching Ratio with cuts:
0.36 ± 0.33%

Λc, standard cuts

0

100

200

300

400

500

600

700

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

Yield = 1450±50

Λc pK+π-

0

2

4

6

8

10

2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45

Yield = 5.2± 4.8

Studies with D+ → K+π+π− show ≈ 2× more signal at same
signal/noise. (Shown in NIM article.)

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.22/36

D+
s Initial Sample

Contributions from D + → K−π+π+ (mis-ID) and Cabibbo
suppressed decay D+ → K−K+π+ included.

2GeV/c
1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

 442± Yield = 29544 +
sD

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.23/36

Signals after GP selection
D+ → K−π+π+ (mis-ID) events removed

2GeV/c
1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

 2
E

ve
n

ts
/5

 M
eV

/c

0

200

400

600

800

1000

1200

1400

 85± Yield = 6100 +
sD

2GeV/c
1.7 1.75 1.8 1.85 1.9 1.95 2 2.05 2.1
0

2

4

6

8

10

12

14

16

 9.2±Yield = 27.5

GP retains 21% of original events, DCS BG reduced ∼ 500×

Optimization uses 1st degree polynomial, analysis 2nd deg.
No real difference (27.9 ± 9.3 events for 1st deg.)

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.24/36

Summary of measurements
We also apply more traditional physics systematics studies to get
percentage uncertainties on our knowledge of the relative
(DCS/CF) uncertainties:

Syst. Unc. (%)

Source Λ+
c D+

s

MC statistics 0.6 0.4

DCS resonances 5.3 10.7

CF resonances 2.1 2.6

GP filter 2.6 3.5

Total 6.3 11.6

which gives us the following central values and limits:
Decay mode Central Value Limit (90% CL)
BR(Λ+

c
→pK+

π
−)

BR(Λ+
c
→pK−

π
+)

(0.05 ± 0.26 ± 0.02)% < 0.46%

BR(D+
s
→K+K+

π
−)

BR(D+
s
→K−K+

π
+)

(0.52 ± 0.17 ± 0.11)% < 0.78%

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.25/36

Conclusions
• I hope, in this very short time, I’ve given you a flavor of

what Genetic Programming is

• These are the first limits for DCS decays of D +
s and Λ+

c

• We have published two articles on this subject
• NIM article on method:

hep-ex/0503007, NIMA 551, pg. 504
• D+

s and Λ+
c rel. branching ratio results:

hep-ex/0507103, PLB 624, pg. 166
• We have shown that GP can be used in HEP event selection

(this is the first application on HEP data)
• Can be used to improve sensitivity over traditional

techniques
• Efficiency of GP event selection is well modeled in FOCUS

We think this novel method deserves further exploration
Eric Vaandering – Genetic Programming Search for Λ+

c
→ pK+

π
− and D+

s
→ K+K+

π
− – p.26/36

Backup slides

Backup slides

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.27/36

f (n) function
A threshold function used in neural networks:

f(n) =
1

1 + e−n

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.28/36

SW Mechanics & Conclusions
Is interfacing to an existing experiment’s code difficult?

• Genetic programming framework
• C language based lilgp from MSU Garage group
• Modified for parallel use (PVM) by Vanderbilt Med

Center group
• Parallel version allows sub-population exchange

• Physics variables start with standard FOCUS analysis
• Write HBOOK ntuples, convert to Root Trees
• Write a little C++ code to access Trees, fill and fit

histograms (using MINUIT) and return the fit
information to the lilgp framework

• This is actually pretty easy

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.29/36

Genetic Programming Process

Create Initial
Population

Evaluate Fitness
of Individuals

Full?
Population

Is

Criteria
Reached?

End

Select
Operation

End
Run

Population
Insert into

Start New
Population

Yes

No

Yes

No

Crossover (90%)

Copy (10%)

Mutate (1%)

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.30/36

Building a tree
Trees are randomly built up one node at a time.

IF Root node ’IF’ has 3 args.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.31/36

Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.32/36

Building a tree
Trees are randomly built up one node at a time.

IF

>

x y

+

*

x x

y

+

*

y y

x

Root node ’IF’ has 3 args.
’>’ chosen for 1st arg.
x and y terminate ’>’
Remaining branches grown
Tree is complete
(all branches terminated)

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.33/36

Parallelizing the GP
Each test takes a while (10–60 sec on a 2 GHz P4) so spread over
multiple computers

• Adopt a South Pacific island type model
• A population on each island (CPU)
• Every few generations, migrate the best individuals

from each island to each other island
• Lots of parameters to be tweaked, like size of programs,

probabilities of reproduction methods, exchanges, etc.
• None of them seem to matter all that much, process is

robust

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.34/36

Practical considerations
Obviously, a tree can grow nearly infinite in size. This is usually
undesirable. There are ways to control this:

• Set limits on number of nodes
• Set limits on depth of nodes
• Create initial topologies of specified depth

A common approach is to allow half of the initial population to
grow completely randomly and to create the other half at a range
of (shallow) depths. In the latter case, pick functions for all nodes
< desired depth, pick terminals for all nodes at desired depth.

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.35/36

Best D+
s tree (63rd generation)

<=>

sign

+

neg

<

Clp Iso1

<

NOT

IF

<=>

<

+

σ` σM

<

neg

<

Clp Iso1

OR

IF

×

<

σ` <

0.63078 Σp2
T

IF

NOT

Iso2

OoT

∆Kπ1

>

max

<

0.63078 Σp2
T

XOR

p Iso2

<

>

max

Iso2 <

f(n)

χ2
π1

Σp2
T

<

IF

∆Kπ1 Cls

√

/

+

πcon1 χ2
K1

IF

p OoT

√

/

+

πcon1 χ2
K1

min

-1.09163 −

NOT

POT

DL

NOT

OoT

IF

+

neg

Iso2

χ2
π1

IF

∆Kπ1 Cls

NOT

POT

DL

Eric Vaandering – Genetic Programming Search for Λ+
c

→ pK+
π
− and D+

s
→ K+K+

π
− – p.36/36

	Overview
	What is Genetic Programming
	Populations and Generations
	Gene Cross-over and Mutation
	Tree Representation
	Crossover (Recombination)
	Mutation
	Mutation
	Mutation
	Survival of the Fittest
	Reproduction Probabilities
	Running the GP
	Application to HEP
	Questions
	Evaluating the GP
	Pre-GP selection signals
	Signals after GP selection
	Best tree ($72^	ext {nd}$ generation)
	GP Bias Check
	Data vs. MC comparisons
	Comparison with Cut Method
	dsplus Initial Sample
	Signals after GP selection
	Summary of measurements
	Conclusions
	Backup slides
	$f(n)$
function
	SW Mechanics & Conclusions
	Genetic Programming Process
	Building a tree
	Building a tree
	Building a tree
	Parallelizing the GP
	Practical considerations
	Best dsplus tree ($63^	ext {rd}$ generation)

